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PREFACE 

The analytical work described herein was conducted at the DOT 

Transportation Systems Center, Cambridge, Massachusetts. The experimental 

work was conducted at the Massachusetts Institute of Technology, Cambridge, 

Massachusetts. The work was sponsored by the National Highway Traffic Safety 

Administration under Project Plan Agreement HS-476. This series of reports is 

specifically concerned with evaluating the impact response characteristics of 

foam-type crash padding materials. This report is the second of three volumes in 

the series. Volume I covered the results of laboratory tests to determine the basic 

dynamic mechanical properties of a typical foam rubber. This report covers the 

derivation of foam-rubber constitutive equation models and the procedures used to 

fit the model parameters to the laboratory test results. Volume III will cover 

application and validation of the best model for impact response prediction. 

iit 
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SUMMARY 

Selection of matertals for energy-absorbent performance is an important 

constderatton for automobile interior padding, which must provide the greatest occupant 

protection for the least padding thickness possible. Rational selection requires an 

understanding of which material properties, as measured in standard laboratory tests, 

correlate well with impact performance in crash situations. Such understanding can be 

gained by characterlzlng a material in the laboratory, constructing a performance model 

from the laboratory test results, applying the model to predict the response of the 

material to impact conditions, and then verifying the prediction by test. 

Volume I of this series of reports summarized the first link in the chain of 

understanding: results of laboratory tests to determine the dynamic properties of Uniroyal 

Ensollte AAC foam rubber, a typical crash padding product which the National Highway 

Traffic Safety Administration has used in other mvestigations of injury mitigation 

concepts for automobile occupants. 

This report is Volume II of the series, and summarizes the results of the second link. 

Earlier methods for constructing material performance models were reviewed and were 

found to be inadequate for representing the impact response characteristics of materials 

like Ensobte foam rubber. Criteria were then formulated for the more complex type of 

model required, and two such models were developed. The model developments included 

organization of curve-fitting procedures which take advantage of all of the relevant 

materials test data. 

When the two models were applied to the Ensollte test data, one was found to 

accurately represent the material over only a limited range of performance, but the 

second was found to represent the material well over the entire range of interest. Both 

models may still be useful for predicting the impact response of Ensobte AAC, and both 

models can be applied to other materials. 

vii/viii 



1. INTRODUCTION 

The first volume of this report summarized the results of laboratory tests to 

determine the compressive mechanical properties of Uniroyal Ensolite AAC foam rubber, 

a recoverable closed-cell crash padding material. The principal results were for stress as 

a function of time after imposition of a fixed strain (stress relaxation) and for stress as a 

function of strain applied at a fixed rate. The second group of results included 

measurements of the “residual” strain present at the instant the material had unloaded to 

zero stress. Both groups of results were extrapolated to typical impact times (0.001 

second) and strain rates (2,000 per second) by means of the time-temperature 

superposition principle, which was used to construct master curves for material behavior 

at 250C from results of tests at lower temperatures. 

The body of data in Volume I characterizes the material response to two specific 

types of loading. This characterization of material properties must be generalized, 

however, to provide a useful basis for predicting the dynamic responses of objects which 

collide with padded structure. What is sought is an equation of state, or constitutive 

equation, which describes the possible relationships between current states and 

incremental changes of stress and strain in the material. 

In the typical impact situation, the colliding mass imposes a known initial strain rate 

on the crash paddmg material. The mass is decelerated and the strain rate decreases, 

however, as the padding builds up stress to resist the motion of the mass. The 

deceleration eventually brings the mass to momentary rest with respect to the paddlng, 

the relative motion is then reversed, and finally there occurs an instant when the padding 

stress has returned to zero. At this last instant, contact between the mass and padding is 

lost, and the impact event is complete. 

To be useful for predicting impact response, a constitutive equation must be able to 

follow all of the foregoing phases of the motion. This imposes the following three 

requirements on the properties of the equation itself. First, as a minimum, it must relate 

the instantaneous rate of change of stress to the instantaneous values of stress, strain, 

and strain rate. Second, It must embody an unambiguous relationship between loading and 

unloading, including transitions between these states at zero strain rate. Third, it must 

account for the presence of residual strain rate in the paddmg at the end of contact. 



In addition to satisfying the foregoing requirements, the constltutive equation t-rust 

also be consistent with the laboratory test data and should have as sample a form as 

possible. This volume summarizes the development of such constitutive equation models 

for the one-dimensional (umform compression) behavior of Ensolite foam rubber. Section 

2 reviews several earlier models which were investigated, but which were found to rave 

various signlflcant limitations. As a consequence of these imtial studies, some general 

mathematical criteria were formulated to govern the construction of multi-parameter 

empirical models, and two such models were derived. Section 3 discusses these 

developments, lncludrng the analysis procedures used to fit the models to laboratory test 

data. Section 4 describes the numerlcal results obtained by applying the curve-fitting 

procedures to the Volume I test data for Ensolrte foam and illustrates the degree of 

consistency obtained. 
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2. REVIEW OF EARLIER MODELS 

Three previously published models were investigated for possible application of the 

prediction of Ensolite foam rubber impact response. The first of these was the classical 

linear viscoelastic solid (LVS), and the investigation also included some extensions of the 

LVS to nonlinear behavior. The second and third were emplrical models based on 

experiments peformed by other investigators. None of these models had enough 

parametric flexibility to describe the behavior of Ensolite foam rubber. 

2.1 THE LINEAR VISCOELASTIC SOLID 

The constitutive equation of the linear viscoelastic solid is given by [ 1 I : 

6 + a/~ + Eo; + E,E/T (1) 

where u and E are the material stress and strain, respectively, and where a dot over 

a quantity indicates a time derivative. 

The parameters of the LVS model have the following meanings. The parameter E, is 

an “instantaneous” elastic moduIus, i.e., it expresses the stress-strain relation for the 

idealized limit of infinite strain rate. The parameter I& is a fully relaxed elastic 

modulus, i.e. it expresses the stress-strain relation for the idealized limit of zero strain 

rate. The linearity of the LVS model refers to these asymptotic stress-strain relations. 

The para meter T is a characteristic decay time, i.e. the amount of time (after a 

suddenly imposed strain) that is required for the stress to decrease to the fraction l/e of 

its instantaneous value. 

The LVS 1s often interpreted in terms of the spring-and-damper analog shown in 

Figure 2-l. The spring represented by E. models the elastic “instantaneous” stage, while 

the time-dependent stage is represented by the parallel combination of spring El and 

damper Cl. The stress 0 is proportional to a strain e. across the first stage, but 
o=EIEl+C1cl across the second stage. The constitutlve relation of Eq. 1 is obtained by 

expressing the model in terms of total strain E, and defining: 

3 



u-0 
E. 

FIGURE 2-l. SPRING-AND-DAMPER ANALOG OF LVS MODEL 
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co3 = EOE1/(EO+E1) T = C1/(EO+E1) (2) 

If the strain and strain rate are prescribed in any self-consistent manner, the LVS 

constitutive equation has the following general solution for the stress-time history: 

u(t) = e -t’T [A + I (E,,t+Cmc/r)e t’Tdtl 
(3) 

where A is a constant whose value is determined by the initial conditions at t = 0. The 

general solution of Eq. 3 includes the so-called hereditary integral solution, which is 

usually expressed in the definite-integral form: 

J 
t u(t) = E(t)c(o) + E(t-t’)E(t’)dt’ 

0 

where 

E(t) = Em + (E. - Em)e-t’T 

(4) 

(5) 

is the so-called relaxation modulus. The following stress solutions for specific applied 

strain-time histories are of interest. 

2.1.1 Idealized Stress-Relaxation Test 

A strain E is suddenly applied at t = 0 and is held constant for t > 0. The 

stress response for t > 0 is: - 

u(t) = E(t)c (6) 

Note that the stress-relaxation behavior of the material is characterized by a unique 

master curve: the relaxation modulus. 

5 



2.1.2 Loadinp at Constant Strain Rate 

Strain IS applied at a constant rate i , begmning at t = 0. Thus, t(t) =t t and 

the stress response for t 2 0 is given by: 

a(t) = Em + (E. - E (7) 

Equation 7 embodies the linear asymptotic properties for the limits of zero and infinite 

strain rate. For finite strain rates, the stress-strain curve has a slight nonlinearity but 

the amount and its characteristics are not flexible enough to allow curve-fitting to 

strongly nonlinear materials. 

2.1.3 Idealized Stress-Strain Test 

Beginning at t = 0, strain is applied at a constant rate t for a finite time (“/;) 

until a maximum strain E is achieved. At t = 7;: , the rate of strain application is 

instantaneously reversed, and the material is allowed to unload. The stress response for 

o&t ( E/t is given by Eq. 7, and at the instant of reversal: 

u.(E/~) = E-E + (E. - E_)(I-~-~“‘) ET 

For tl 9; , ie. the unloading phase, the stress response is given by: 

a (t> = Z(Em~ + EoLr)e E/iT ,-t/-r 
- CEO - Em)ETe -t/T 

+ Eco(it - i-r- 2~) - E ET 
0 

(8) 

(9) 

6 
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A plot of the loading-unloading response would reveal a shght hysteresis effect and a 

small residual strain at the point where u (t), as calculated by Eq. 9, returns to zero. Like 

2.1.2, however, these characteristics are not flexible enough to allow curve-fitting to 

strongly nonlinear materials. 

2.1.4 Steady-State Sinusoidal Response 

A strain E(t) = E sinw t is applied to the material with a constant strain 

amplitude E: and a fixed frequency a. The strain rate is also sinusoidal, E (t) = WE CoS at 

The stress response (after sufficient time to damp out transients has elapsed) is a 

sinusoid that lags the strain input by a phase angle 0 : 

u(t) = as1n(wt + 4) 

where 

tan@ = 
CEO/Em - 11~~ 

1 + (Eo/EJ (~1~ 

(10) 

(11) 

(12) 



The solution is sometimes expressed m terms of the equivalent complex moduh E’ and E” 

as follows: 

u(t) = (E’ + IE”) Esln(dt) 

where 

and where 

Em, + EJd 2 
E’ = 

1 + (J 

E” = (EO - E,)wT 

1 + (bT)2 

X3) 

(14) 

(15) 

(16) 

Steady-state sinusoidal response tests are often used to characterize the 

vibratory damping properties of viscoelastic materials. The damping factor cart be 

related to the energy loss per cycle of sinusoldal motion, and the energy loss 1s 

proportional to tan $ . The LVS model has a loss-tangent characteristic with a unrque 

maxlmum at the frequency: 

(17) 
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However, real vtscoelastic materials tend to have loss tangents which are flat over a wide 

frequency range, or which possess several weak local maxima. 

2.2 COMMENT ON LVS MODEL 

Before the other models are discussed, it is worthwhile to recognize the 

influence that the LVS model has exerted on viscoelastic materials research. The LVS 

model is attractive for three reasons. The first is its convenient physical interpretation 

(Figure 2-l). 

The second reason is the ease with which analytical solutions to dynamic 

problems can be obtained from the LVS model. Several examples simulating labora tory 

tests were mentioned in Section 2.1, but even some impact situations can be similarly 

analyzed. For example, consider the problem of a rigid mass M which strikes a rigidly 

supported LVS pad of cross section area A and thickness L; the mass is further assumed to 

have a flat face and the same cross section as the pad, so that the material will be 

subjected to uniform compression (Figure 2-2). The mass has an initial velocity V and is 

decelerated after contact (t > 0) in accordance with: 

Mx = - aA (18) 

9 



INITIAL VELOCITY = V 
b 

STRESS 
-0 

v 
3 RIGID 
5 SL’PPORT 

y STRAIU & = X/L 

AREA =A 

1 
MOTION OF .MASS (XI 

MEASURED FROM 
INITIAL CONTACT AT 

t=O 

FIGURE 2-2. A FREE-IMPACT PROBLEM 
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Under the foregoing assumptions, it is easy to show that Eq. 18 can be combined 

with the LVS constitutive equation (Eq. 1) to obtain: 

l ;r* + ?/T + EoA;/ML + EmAa/ML-r = 0 

subject to the initial conditions 

u=o ; ; = EoV/L; t’ = (Em-EO)V/L~ 

at t = 0. The solution can then be expressed immediately in the form: 

u(t) = Ale Xlt +Ae X2t X3t 
2 +Ae 3 

(19) 

(20) 

(21) 

where 5’ x2’ X3 are the roots of the characteristic polynomial corresponding to Eq. 19 

and AL, A2, A2 are determined from Eq. 20. 

The third reason is that the LVS model displays all its parameters directly for any 

type of laboratory test. Thus, only a few data points from one type of test are required to 

fit the parameters, if one accepts a priori that the LVS is a reasonable model of the test 

material. If the stresses al = a (t1), 3 = u (t2). and the stress asymptote ua 
are obtained from a stress-relaxation test at one strain E, for example, the LVS model 

parameters are given by: 

Ecv = Urn/E 
(22) 

11 



lo =E +(o cn 1 - urn> - “Jrn (23’1 

(241 
m = t+t 2 - tll. 

where m = t1/(tq-tl)* 
The LVS is a useful conceptual model because it combines the major characteristics 

of viscoelastic behavior with convenience in curve-fitting and dynamic analysis. As 

attractive as this combination is, however, one should avoid the temptation to force-fit 

real material test data into the LVS mold. 

2.3 EXTENSION OF SPRING-DAMPER ANALOG MODELS 

Spring-damper analogs such as the one shown in Figure 2-l have served as points lof 

departure for modelling complex aspects of viscoelastic behavior. One of the traditional 

approaches is to add more linear components to the model, each component representing 

one more parametric degree of freedom. This approach has been extensively used, for 

example, to construct models of relaxation for real polymers which possess multiple 

relaxation mechanisms with distinct characteristic decay times [ 3 1 . 
A different approach was taken in the present investigation in order to model 

different types of stress-strain curve nonlinearity. Single-component modifications or 

addltlons were made to the baseline configuration of Figure 2-l to lndivldually model two 

specific stress-strain nonlinearities. 

In the first model, a softening characteristic was obtained by modifying the elastic 

spring E, as shown in Figure 2-3. The constitutive equation for this model is: 

+ n(Eo/B)(a/B)“-i 
I 

6 

= Em~,‘l + EoC - 1 + (Em/B) (o/B)“-1 
3 

U/T 

125) 

where the material parameters E,, Em , B are moduli, T is the characteristic time and 

n > 1 is a dimensionless, exponent. At the limit of zero strain rate, the behavior of this 

model follows the Ramberg-Osgood stress-strain relation: 

E = o/E 00 + WBln 
12 

(26) 



E 
0 

\ 
-- 

T = C,/(Eo+E,) 
Em EoE,/Eo+E, I E 

0-T 

FIGURE 2-3. SPRING-DAMPER MODEL WITH SOFTENING CHARACTERISTIC 
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Figure 2-4 illustrates the second model, which produces the stiffening behavior with 

a constitutlve equation of the form: 

(2’0 

The material parameters play the same roles as in the softening model, but B and n ha\ e 

different interpretations. The asymptotic behavior in this case is: 

0 = Emu + Bt” (28) 

The equations of both models are restricted to the compresston side of the stre!s- 

strain diagram, but the stram rate and stress rate can be either positive or negative. Both 

models possess the undesirable feature that they permrt strains c > 1 unless llmlted by 

auxiliary logic. 

Numerical simulations were run to Investigate the behavior of the non-lmear-sprmg 

models. The next three figures rllustrate some typical results obtained from a softening 

model. Figure 2-5 plots a family of stress-relaxation curves for several different strains. 

The curve tends to flatten at larger values of applied stram. Figure 2-6 compares the 

static stress-strain curve with a slmulatlon of stress-strain tests at a constant strain rate. 

The srmulatlon includes the unloading as well as the loading phase to demonstrate the 

hysteresis embodied in the model. The strain rate used In the simulation was chosen to 

maximize the width of the hysteresrs loop. Figure 2-7 compares this case with 

simulations at higher and lower strain rates. Slmllar behavror characterlstlcs were fcund 

for the stiffening model. The HP67 programs used to run these simulattons appear in 

Appendix A. 

The change in the shape of the stress-relaxation curve as a function of applied strain 

and the softening or stlffenmg characteristics of stress-strain curves are all features 

found in the behavior of real viscoelastic materials. However, the nonlinear-spring 

models were found to have only llmrted abl1ltle.s to reproduce these features. For 

example, the tendency of the hysteresis effect to peak at a finite strain rate in the model 

(Figure 2-7) IS fundamentally different from the tendency of a steady increase of 

hysteresis with rncreaslng strain rate in Ensobte foam rubber (Figure 2-8). Therefore, the 

nonlinear-spring models were judged to be unsuitable to represent real material behavior. 

14 
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FIGURE 2-4. SPRING-DAMPER MODEL WITH STIFFENING CHARACTERISTIC 
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2.4 EMPIRICAL MODELS 

Two empirical models proposed by other mvestlgators were examined. Roth models 

are based on an approach of direct curve fitting to a single kind of laboratory test data. 

2.4.1 Power-Law Model for Stress Relaxation 

Meinecke and Clark [4] have proposed a power-law representation in the time 

domain to fit stress-relaxation data. The model also includes an asymptotic stress-strain 

nonlinearity. The empirical equation for this model IS: 

a(t;t) = EE&)t-n 

where i is the flxed stram applied In the stressrelaxation test and E( E, embodies the 

stress-strain nonllnearity. Since Eq. 29 implies arbitrarily high stresses at arbitrarily 

short times, however, It is better to express the power-law model in the form: 

where tt is defined that ~E(E 1 1s the first stress observation at time to after the 

experiment has started, and where the model IS implicitly restricted to times after the 

first observation. 

The time scale, t, In Eq. 30 has been shifted such that t = 0 corresponds to the 

first observation point. Under these arrangements a hereditary integral can be used to 

extend the power-law model to sltuatlons other than the stress-relaxation test. For 

example, the response of stress to strain applied at a constant rate i would be predicted 

by: 
o(t,i;) = : oi E(ti) + k (31) 

where E (tt ) 1s the value of E(t ) at time t. 

The model of Eq. 29 has been used to fit the stress-relaxation behavior of several 

foam-rubber materlalsl4land equivalent fits could easily be made with Eq. 30. However, 

the data available for fitting spanned 0.1 to lo4 seconds after test start, i.e. times much 

longer than the expected durations of typical impacts. Even if shorter-time data were 

avallable, flttlng the stress-relaxation data would still not guarantee that Eq. 31 could 

correctly predict the hysteresis effects associated with impact response. Also, ths 

power-law model does not lend itself well to the formulation of a true constituttve 

equation, and 1s thus computa tionally Inconvenient. 

20 



2.4.2 Power-Law Strain-Rate Model 
Recent work in the United Kmgdom (UK) included investigation of six rigid and 

nine semi-rigid foamsl51 . In this study, the investigators obtained stress-strain curves at 

several different constant strain rates and used the data to fit models of the form: 
(32) 

a(E,;> = f(&- 

For strains up to 0.5 in the rigid foams they found that f( E) is close to a constant for each 
material, while the strain-rate exponent, r, ranged from 0.02 to 0.08 for the six materials. 

The small exponent values suggest that such materials can be adequately represented by 
two parameters: a crush strength and a limit strain. Beyond the limit strain, the foam 

cell structure must be considered to have completely collapsed, and the pad stiffness 
would then be controlled by the mechanical properties of the solid material from which 

the foam is made. For the semi-rigid foams the investigators were able to fit the 

material test data reasonably well with the empirical equation: 

U(E,C) = E~T/(l-~)” (33) 

where E,n, and r are the parameters. The strain-rate exponent, r, ranged from 0.04 to 0.3 

for the nine semi-rigid foams studied. 

The UK work was also correlated with impactsimulation tests in which rigid 

spheres were allowed to strike rigidly supported pads at speeds of about 6 mph. A load 

cell in series with the supporting structure measured the time-history of the total force F 

acting on the pad. Force-time history predictions were made by taking: 

F = a(e,i)A 

where A is the contact area on the pad (linearized in terms of the sphere penetration Xp, 

assumed to be much smaller than the sphere’s radius), and where three-dimensional 

effects of the nonuniform contact were neglected. The agreement between predicted and 
measured force durmg the penetration phase of the impact was excellent for the rigid 

materials, which were also observed to have Poisson’s ratios close to zero. The 
predictions for semi-rigid foams were somewhat in error, a result which was attributed to 

threedimensional effects. 
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The foregoing model appears to be most useful for rlgrd foams and withm the 

confines of those sltuatlons that have been studled experimentally. The model IS not well 

suited to predlctmg the unloading and rebound characteristics of semi-rrgld foam pads, 

however, and IS lmposslble to reconcile with data from stress-relaxation tests because Eq. 

32 lmplles that a(t)= 0 for all times after the applied stram IS held constant. 

22 



3. DEVELOPMENT OF MULTI-PARAMETER EMPIRICAL MODELS 

The viscoelastic material models discussed in Section 2 have a common feature: 

each employs a few parameters to match one aspect of material behavior. Even if the 

model can reproduce the matched aspect accurately, however, it is questionable If other 

important aspects can be reproduced. 

Nonlinear-spring models can match nonlinear asymptotic stress-strain curves but 

are unable to reproduce realistic hysteresis effects or stress-relaxation behavior. The 

power-law model for stress relaxation can be fitted to relaxation data but not to 

hysteresis effects, and it is not per se a constitutive equation. The power-law strain-rate 

model can match nonlinear stress-strain curves and (to some extent) the effect of finite 

strain rates on the loading phase but is inconsistent with stress relaxation and asymptotic 

behavior at zero strain rate. 

Consequently, the present investigators decided to try an empirical approach 

without restriction on the number of model parameters but with emphasis on matching as 

many aspects of uniform compression behavior as could be gleaned from the laboratory 

test data reported in Volume I. The approach was constrained by some general conditions 

of consistency, which candldate models were required to satisfy. Two such empirical 

models were formulated: one with 9 and one with 21 parameters. The development also 

encompassed an organized procedure for fitting the models to the test data. 

3.1 CONDITIONS OF CONSISTENCY 

Four behavior characteristics of viscoelastlc materials are significant for the 

impact situation and should be modelled independently to avoid the limitations of the 

earlier models. These characteristics are as follows. 

First, the stress-relaxation curve must influence the response of stress to 

changing strain rate. Although the stress-relaxation curve itself corresponds to a state of 

fixed strain and zero strain rate, the material behavior exhibited in this test reflects an 

“inertial” property that forbids discontinuous changes in stress, even when the strain rate 

changes discontinuously. The family of experimental stress-relaxation curves will be 

represented by 0 l(t, E ). 
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Second, the stress-strain curve for loadmg at constant stram rate should bear 

some relation to the loadmg phase of an Impact. The family of these experlmental curves 

~111 be represented by J 2( E, L), with the understandmg that E = it on each curve. 
Third, the stress-strain curve for unloading at constant strain rate must bear 

some relation to the unloading phase of an Impact. The shape of the unloading curve 

should depend on the maximum strain E * reached In the loading phase, but may be 

independent of the loading curve shape at high strain rates. Only that part of the 

unloading curve between the loaded and zero-stress states is of interest, and will te 

represented by u 3( E , ;, t *) with E proportronal to i t on the curve. Also, continual y 

between stress states at the Instant of load reversal requires that the expresslon for ( 3 
reduce to the expression for 0 2 when t=~ *. 

Fourth, any material model should possess consistent asymptotic characteristics, 

i.e., the stress responses to the relaxatron and stress-strain tests should converge at long 

times and low strain rates, respectively, to the same asymptotic stress-strain curve um( E). 

If y,O 2, “3, and D ,are a set of candidate functions, each of which suitably represents its 

assigned behavior aspect, then the model consistency requirements are: 

op,d + u@(E) as t -+ m (35a) 

aZ(c,6) dnd CT~(E,;,C*) + am(~) a5 i: -f 0 

The conditions of consistency are satisfied by the family of constitutive 

equations: 

6 + U/T = S(E$) 
(36) 

where S( pi) is any continuous function of strain and strain rate and where (for the 

moment) attention is focussed on the loading behavior. 

straightforward. The asymptotic stress-strain behavior IS 

by recognizing that 5 -+Oas i + 0, I.e.: 

Proof of this proposition is 

obtained directly from Eq. 36 

u2 = TS(E,O> x U,(E) 

For stress-relaxation behavior, the general solution of Eq. 36 is given b$21: 

y(t,c) = e-‘* A +/S(,,;)+dt 
c 3 

(37) 

(38) 
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For the conditions of stress relaxation,; =O and E constant, Eq. 38 reduces to: 

cl(t ,F) = Ae‘t’T + -rS(,,rt) (39) 

Hence, ol(t, E ) -t T Sk ,O) as t + CO , which proves the proposition. The foregoing proof 

also holds for functions S( I , E , E *) which satisfy stress-state continuity at reversal from 

loading to unloading. 

The LVS model (Section 2.1) is a member of the family defined by Eq. 36. Other 

members can involve nonlinear functions of strain and strain rate, but the family has the 

property of a single characteristic decay time. It remains to be seen, therefore, whether 

another member can be found to suitably represent real material behavior. The stress- 

relaxation test results for Ensolite foam rubber appeared to suggest such a possibility (see 

Figure 2-3 in Volume I). 

3.2 NINE-PARAMETER MODEL 

An empirical model containing nine parameters was developed for application to 

Ensolite foam rubber as follows. First, candidate functions o2 and o3 were selected to 

represent the stress-strain test results. Second, the candidate functions were used to 

derive the forms of S( E, E> and S(E,~,E*) for the loading and unloading branches of the 

constitutive equation. Finally, the constitutive equation was used to derive the other 

behavior functions al and o, . 

The following function was selected to represent the loading phase of a stress- 

strain test: 

a2 (F,:) = ‘m (E, 
(l-tp 

+ E,;') (40) 

The exponents m, n, r respectively, provide a strain-softening characteristic, a strain- 

stiffening characteristic, and sensitivity of stress to strain rate. The two remaining 

parameters Em and Er are moduli. This function is thus equipped to represent the type 

of behavior evident in the loading branches of the stress-strain curves shown in Figure 2- 

8. 
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Some additional consideration was requtred before selectmg a candldate function 

for unloading. Examination of Figure 2-8 led to the observations that, after unloadmg, 

the residual strain tended to increase raptdly with increasmg strain rate, and that large 

residual strain correlated with difference between the shapes of the loading and unloading 

curves. 

However, these observations are based on the results of tests m which the 

maximum strain t * IS of the order of 0.8, while the material model must be able to deal 

with both smaller and larger values of t*. For smaller values of E*, it was assumed that 

the residual strain would be proportionately reduced, and that the shape of the unloading 

curve would more closely resemble the shape of the loading curve. To deal with larger 

values of t *, it was assumed that the residual strain would be proportionately mcreased 

up to a limiting value associated with the asymptotic case t * + 1. 

The following function was consequently selected to represent the unloading 

phase of a stress-strain test: 

c+,i,t*) = E-E *(T*t) P 

c 1 
qbt) E l- (T”&)P 

(41) 

where it is to be understood that the magnitude of i is to be used in this equation, since 

ic 0 for unloading. For t = t*, Eq. 41 reduces to Eq. 40, i.e., Eq. 41 satisfies the 

requirement for stress continuity at load reversal. The term (T t jp represents the 

limiting value of residual strain; the parameters T *, p provide a scale factor and a 

power-law behavior for the limiting residual strain as a function of strain rate. 

The effect of Eq. 41 1s to create a linear mappmg of a part AB of the loadmg 

curve to produce the unloading curve shape. Figure 3-l schema tlcally lllustrat es the 

mapping effect. 

26 



w 

b 

w 

27 



The function Sk, E ) for the loading branch of the constltutive equation can now be 

obtained by substitutmg 0 2 l da 
. 

in the left hand side of Eq. 36, and by noting that A=L ;TE 
because F = Et on the stress-strain curve. This leads immediately to: 

S(E,il = Edo2/dE + Q/T 

m . . 
E = 

(l-&-l 
CE, + Er$) [F + e + 

In a similar manner, the unloading branch is derived as: 

Em-2 

S(E,E,E*) = 
E*(T*~)~(E_+E~?) 

(l-E)n[l-(T*t)P] 

(42) 

(43 1 

E-E *(T*;) P 
+ 

.[l-(,*qP] 
S(&,E) 

The remaining behavior functions can now be found by combining Eqs. 38 and 42, 

which leads immediately to the stress-relaxation equation: 

al(t,E) = Ae -t/T + EmCrn [E,+(Eo-Em)+]~” 

(l-e>n = (1-c.)” 

Also apparent from Eq. 44 is the asymptotic stress-strain function: 

E_krn 
am(E) = ___ 

(1-Ep 

The complete constitutive equation of the nine-parameter model: 

: 

S(E,~) for i > 0 - 
5 + U/T = 

S(E,/cl,E*) for i < 0 

(4G 

(411) 

(46) 
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actually makes use of only eight parameters: the decay time T; the moduli E, and Er; the 

scaling factor T *; and the exponents m,n,p,r. The ninth parameter, Eo, is not actually 

required unless one wishes to compute a response to the idealized stress-relaxation test 

described m Section 2.1(a). 

3.3 MODEL WITH TWENTY-ONE PARAMETERS 

As will be seen In Section 4, the ability of the nine-parameter model to fit the 

Ensolite foam rubber test data was questionable in some respects, particularly with regard 

to stress-relaxation behavior. Therefore, a second model was developed to provide 

additIona time-scaling flexibtlity. The loading-to-unloading mapping properties of Eq. 43 

and the stress-strain nonlinearity of Eq. 45 were retained in the second model. The added 

flexibility was achieved by means of a straindependent rate exponent in the loading 

stress-strain curve and a strain-dependent decay time in the stress-relaxation function. 
Accordingly, Eqs. 40 and 44 were replaced by the following functions: 

.T CXP (2/v) 
uZ(E,q = Urn(E) + are 

[ 
exp (EW/X) 

U](LE) = yJE) + aoeup(-tA/BC’) 
C 

exp(//b) 

- exp( E)/z) 
3 

(47) 

exp(-2/d) 
3 

(48) 

where a,(e) is given by Eq. 45, and where uO, u r,A,B,C,a,b,c,d,r,u,v,w,x,y,z are new 
para meters. The parameters E m ,m,n, T*, p are retained from the earlier model. 

The new model contains 21 parameters, of which 16 appear in the constitutive 
equation. The constitutive equation, derived as outlined in Section 3.2, is as follows: 

;r + S(E,L) - (At A-l/BCE)o G>O) (49) 

m 
6 = -~ Et*(T* jkI)P EmE 

C2[1-(,*ikl)p1 
[ 

. rexp(-cU/v) 
(1 l)n + J"E' c 

cup (+x) -cup (J/z) 

+ 
- (At*-l/BC’) u (C<O) 

(50) 
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4tA-l J =- -- 
BCE 1 

+ u p 
rexP(-E”/~T) FWeXP(Eh,X) + 2 (51) 

z 

+ 
c 

*tA-l Eru ~ - 
BC’ 

- ~UlnjElexp(-cU/v) tv exp(EW/x) - exp(-eY/z) 

3.4 CURVE-FITTING PROCEDURES 

Least-squares regression formulas were developed to fit the model parameters to 

the laboratory test data. Linear regression formulas were derived by taking logarithms of 

the behavior-aspect equations. The resulting procedures were straightforward for the 9- 

parameter model but not for the 21-parameter model. 

3.4.1 Regression Formulas for g-parameter Model 

The basis of the approach to curve-fitting is to deal with groups of parameters, 

taking advantage of previous results at each step. In the first step, attention is focussed 

on the asymptotic parameters I&, ,m,n which appear in Eq. 45 for am(~). In logarithmic 

form Eq. 45 becomes: 

lOPa, = logEm + mlogc - nlog(l-E) (52) 

Now assume that there are N asymptotic data points ( E . ,ucoi ) available. Then the 
1 

square error associated with fitting Eq. 52 to these data points is given by: 

0,)” = 
N 

4 
logEm + mlogc 

1=1 1 - nlog(l-cl) - logoal 2 
3 (53) 

and simultaneous linear equations in log% ,m,n can be derived by minimizing ( A,j2 w th 

respect to these parameters. 

In the second step, attention is focussed on the parameters E, and o which appear 

in Eq. 44 for the stress-relaxation behavior c 1 (t, E). Equation 44 can be rewritten as: 

(1-c)” temcl - Em = (E. - E_)eet/’ (‘i4) 

30 



This leads to the square-error expression: 

+I2 = lWEo-~J - tl/T - log c-m, 2 (55) 1 

in terms of the stress-relaxation test data points (E i, oli,Ti). The values of E, ,m,n are 

assumed to be as given by the first step, and (A 1)2 is minimized to derive simultaneous 

linear equations for logfEo-E,) and l/T. 
In the third step, Eq. 40 for the loading stress-strain curve is rewritten in a manner 

similar to the procedure used in the second step, leading to the square error: 

logEr + rlogi - log c;” aZ1 - ’ (56) 
1 

in terms of the stress-strain test data points ( E i, ‘i, o2 i ). The values of E, ,m,n are 

again assumed to be as given before, and ( A 3~2 is minimized to derive equations for Er 

and r. 

The fourth and last step determines the values of the residual strain parameters T * 

and p. These parameters appear in Eq. 41 in the term: 

EO 
= E * (T * 61) P (57) 

where co is here defined as the residual strain after unloading from the maximum strain 

E * in a stress-strain test at the strain rate & The square-error expression corresponding 

to Eq. 57 is: 

(A ;; ) 2= g 
C 

Cl/p) log CL o,/E;, - log?* - logi 2 
1=1 1 1 (58) 

in terms of the stress-strain test data points ( E i, E *, ho i ), and minimization leads to 

simultaneous equations in l/p and log-r*. 
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3.4.2 Regression Formulas 

The fnst and fourth steps in curve-fitting the 21-parameter model are identical lo 

the corresponding steps for the g-parameter model. The second and third steps require 

some additional consideration, however, because of the complexity of the modlfred 

behavior functions introduced in Eqs. 47 and 48. 

The loading stress-strain function in Eq. 47 can be rewritten in the form: 

a2 - Emcm/ (l-~)~ = u* (+jr* (E) 
(53) 

where 

o* (El = or exp (E~/x.> - exp (-E~/z, 
C 1 (60) 

The functions u* and r* are first treated as intermediate parameters by grouping stress- 

strain test data points into subsets ( Ei,(Jzi ) for individual values of strain. The values of 

0 * and r* can then be determined by regression of: 
r’ (E) = rexp (-c”/v) (61) 

*2 
1=1 C 

2 (62) 
loga* - r*logil l- - log y c - E_?/ 

from Eq. 59. The remainmg steps tnvolve estimation of the model parameters m two sub- 

groups by using u * and r* in Eqs. 60 and 61, respectrvely. 

A heuristic approach has been taken with respect to Eq. 60. The form of the strain 

functron in brackets is such that its value is zero at E =O and large when Eis large. Hence, 

one can choose an Intermediate strain for which the function should have a unit value, and 

one can then choose uy to be the value of 0 *at the intermediate strain (in the case of the 

Ensolite test data, an rntermedlate strain between 0.15 and 0.2 appeared to be a good 

choice). The form of the strain function also leads one to expect that exp (E W/x) + 1 much 

faster than exp (- EY/z)+ 1 as E+ 0, le., exp( ‘w/x) g 1 for small strams. Conversely 

exp( - E Y/z) + 0 rapidly for large strains. 

The heuristic estimation procedure is then as follows. With or= a* (f rnt) at the 

intermediate strain, Eq. 60 is replaced by the two estimatron formulas: 
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u* (E) = ur[ 1 - exp (-cy/z)] for E < EINT 

u* (E) + arexp (-cy/z) = arexp (E~/x) for E > E INT 

The square-error expression corresponding to Eq. 63 is: 

A 
2 =g 

1=1 c 

ylogEl - logz - ww3[ur~:~ (J} 2 

(63) 

(64) 

(65) 

for the parameters y, logz in terms of small-strain data. Corresponding to Eq. 64: 

2 =$ li hlogEl - logx - loglog I u* (c,) + ur exp(-E)I/Z) (66) 
u 

1=1 r II 

for the parameters w,logx in terms of large-strain data. The term exp(-EiY/z) in Eq. 66 is 

based on the previously calculated values for y and z, and has been included to improve 

the accuracy of the procedure when the large-strain data points include strains not much 

larger than E int. 

The foregoing set of procedures involves approximations. Therefore, it is also 

necessary to iterate the estimates for w,x,y,z obtained from Eqs. 65 and 66. 

The remaining parameters are estimated from Eq. 61. The form of the strain 

function in this equation is such that r = r*(O), and a heuristic approach is again required. 

In this case, the procedure is to choose r = r*(E) for the smallest value of strain available 

in the data base. The last two parameters u,logv can then be calculated from the square 

error: A2 =f 
1=1 c ulogc 

1 
- logv - loglog I 11 r* Z,, 

2 

(67) 

The stress-relaxation function in Eq. 48 is treated in a similar manner by rewriting 

in the form: 

a1 - Em~m/ (l-~)~ = u* [E)exp(-t*/BC’) (68) 
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where 

From Eq. 68, one recognizes that 0 * (E) is an “instantaneous stress” function. The 

stress-relaxation test data does not include points at times sufficiently short to 

approximate u* (E) , however, as was discussed in Section 2.1 of Volume I. Therefore, 

stress-strain test data from tests at extremes of high strain rate and low temperature was 

used to estimate u* (E) in the present case. 

The first subgroup of parameters is then iteratively estimated by a heuristic 

procedure analogous to Eqs. 63 through 66, i.e. (JO = o* ‘Eint’ and 

ClOgE 
1 

- logd - 

2 

F 

u* (Ed) + a0 exp(+d) 2 
” alogE - logb - loglog 0 

0 11 
for E ’ E 1nt (71) 1 

where, in the present case, lint = 0.5 was found to be a good choice for the Ensolite test 

data. The final three parameters A, logB, 1ogC can then be estimated from the square 

error: 

I”, 
2 -logB- E 

exp (+I - exp (-+d) 

1 logC-loglog 
- Emclm/ (1-Q” 

(72) 

in terms of stress-relaxation data points ( Fi’aIiS 9 ). 
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4. APPLICATION OF MODELS TO TEST DATA 

The 9- and Zl- parameter empirical models were applied to the test data 

developed for Ensolite AAC foam rubber and reported in Volume I, using the curve-fitting 

procedures described in Section 3.4. Some smoothing of the test data was done before the 

models were curve-fitted. 

4.1 DATA SMOOTHING AND INPUT 

Data points from stress-strain tests at low strain rate (0.0012 per second) were 

used as input for fitting the asymptotic parameters Em ,m,n. Smoothed stress-relaxation 

data was generated from the test results by readmg data points from the time- 

temperature-superposition master curves (see Volume I, Figure 2-3). 

The stress-strain master curves (see Volume I, Figure 3-3) were avoided, however, 

because they fell below the high-rate test data. Instead, the high-rate test data points 

were averaged at each value of strain rate to provide input for the loading stress-strain 

behavior. 

High-rate data should also have been used to calculate the residual strain 

parameters, but measurements of the residual strain were found to be inaccurate at strain 

rates exceeding 73 per second. Lower strain-rate data was used, therefore, and 

consequently this part of the model can only be considered as an extrapolation for impact 

strain rates. 

4.2 RESULTS FOR MODEL PARAMETERS 

Tables 4-l and 4-2 summarize the parameter values for the 9- and 21-parameter 

models, respectively. The parameters E, ,m,n, ~*,p are the same for the two models. 

The parameters r and r * are reported in units of milliseconds (ms). Each table gives 

reference to the corresponding behavior-function equations and to comparison plots 

discussed in the next section. 
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TABLE4-1. RESULTSFORg-PARAMETERMODEL 

PARAMETER VALUE STANDARDERROR EQ. FIG. 

Eoo(psi) 7.69 0.86 psi 45 10 
m 0.675 

n 1.09 

Eo (psi) 22.12 

T (ms) 8.81 
10.80 psi 44 12 

Er (psi) 5.45 5.90 psi 42 13 
r 0.1666 

T* (m.59 0.00976 0.00948 57 11 

P 0.0987 
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TABLE4-2. RESULTSFORPl-PARAMETERMODEL 

PARAMETER VALUE STANDARD EQ. FIG. 
ERROR 

Em 7.69 psi 0.86 psi 45 10 

m 0.675 

n 1.09 

00 66.0 psi 0.96 48 12 

A 0.130 

B 0.156 

C 3.08 

a 10.12 

b 0.279 

C 1.94 

d 0.0290 

ar 4.153 psi 1.25 psi 47 13 

r 0.190 

U 3.17 

V 0.580 

W 2.57 

X 0.296 

Y 2.23 

z 0.00164 

* T (ms) 0.00976 set 0.00948 57 11 

P 0.0987 
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The tables also report standard errors for each group of parameters. The 

standard error measures the inaccuracy of the curve fit with respect to the input 

data points. For example: 

Standard Error = (73) 

measures the deviation of om (ci ) , as calculated by Eq. 45, from the input data 

points a coi. The second and third groups have standard errors related to the stress- 

relaxation function u1 and the stress-strain function a2 , respectively. The 
standard error of the fourth group is related to the residual strain function ho (Eq. 

57). 

Note that the errors in al and 02 are comparable to the values of the 
respective modulus parameters for the g-parameter model. This is an indication of 

poor fit. Conversely, these errors are much smaller in relation to the modulus 

parameters of the 21-parameter model. 

4.3 COMPARISON OF BEHAVIOR CURVES WITH INPUT DATA 

Figures 4-l through 4-4 compare the empirical model behavior curves with 

the input data from which the model parameters were calculated. Figures 4-l and 

4-2 compare the asymptotic and residual strain behavior, respectively. These plots 

apply to both models, and they show that the models fit these behavior aspects 

well. 

Figures 4-3 and 4-4 illustrate the stress-relaxation and stress-strain 

behaviors, respectively. The improvement in fit provided by the 21-parameter 

model over the g-parameter model is evident in both cases. 
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5. CONCLUSIONS 

The research reported herein comprises an investigation and development of one- 

dlmenslonal constltutive equation models for application to crash paddrng materials and 

the application of two models to laboratory test data previously developed for Uniroyal 

Ensolite AAC foam rubber. The following conclusions can be drawn from the results of 

the research: 

o Neither conventional material models such as the linear viscoelastic solld nor 

empirical models with only a few parameters based on limlted aspects of 

observed behavior are sufficiently flexible to accurately describe the dynamic 

behavior of real vlscoelastic materials with strong nonlinearities. 

o Nonlinear viscoelastic material behavior can be described by multi-parameter 

empirical models. Such models can be formulated in accordance with conditions 

of mathematical consistency, an approach which leads to a useful constitutive 

equation. The constitutive equation is the essential basis for prediction of 

material response under dynamic conditions other than standard laboratory tests. 

o Least-squares estimation procedures can be developed for multi-parameter 

models in a way such that the parameters can be fitted to materials test data in 

an organized approach. This approach takes advantage of the entire test data 

base, i.e., the parameter estimates are unbiased. 

o The two models that were developed and applied to the Ensolite test data 

contain 9 and 21 parameters, respectively. The g-parameter model is easy to fit 

and work with but represents the material poorly at short times and high strain 

rates. The 21-parameter model is difficult to fit and work with but represents 

the material well over the entire dynamic range of interest. 

o Both the 9- and 21- parameter models can be applied in principle to test data 

gathered on other viscoelastic materials which might be candidates for crash 

padding. 
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APPENDIX 

HP67 PROGRAMS FOR NONLINEAR-SPRING MODELS 

OF CONSTITUTIVE EQUATIONS 

This appendix contains two programs based on Eqs. 28 and 30. The first simulates 

the idealized stress-relaxation test and is discussed in Section A.l. The second simulates 

the stress-strain test at constant strain rate (see Section A.2). Both programs have 

options for either softening or stiffening behavior. 

The finite-difference algorithm for the softening model is given by: 

-cE l oEk mk +Ec 
‘k+l = ‘k + 

- Il+(EJB> (ok/B)“-? “k 
h 

l+n (Eo/B) (uk/B)“-l M.1) 

where h = At/T . The stiffening algorithm is given by: 

ak+l = ak + I l+n 
1 

(B/Eo)Ekn-‘] TEOEk + [ 1+ WE, jEk n-1] EmEk - “k 

(-4.2) 

for stress relaxation t =0 and E is a constant. For the stress-strain test E is a constant 

and Ek=khf . 

A.1 Stress-Relaxation Program 

The program starts from specified initial conditions E *, 0 *. For the softening 

m ode1 0 * is specified and the corresponding value of E: * is momentarily displayed 

before the time integration begins. For the hardening model E* is specified and 0 * is 

momentarily displayed before the time integration begins. 
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During the time integration, the program momentarily displays the current step number. 

H, and the current stress, u H, where H is a specified multiple of the nondimensional time 
step size h. At each step, the program tests the termination condition: 

I (Ok+1 - ‘k)/‘k+l I < 10 -3 

If this condition is satisfied, the program momentarily displays the last step number, k+l, 

the corresponding stress, 0 k+l, and then stops with a comparison value in the display. For 
the softening model, the comparison value is a strain E **, and the difference E *- @* il; 

an indirect measure of the degree to which the stress has relaxed. For the stiffening 

model, the comparison value is the asymptotic stress u m , anda k+l - urn measures the 
degree of relaxation. 

The nature of the termination condition is such that the process of relaxation may 

be “stopped short” when a small time step size is chosen. If the error measure indicate; 

that this has happened, then increase h by a factor of 10 and make a second run. (In 

general, the values h = 0.1 and h = 1.0 will cover the most significant range in the 

relaxation process.) if the termination condition leaves an unacceptably wide data gap 

between the two h-values, decrease the tolerance to 10-4 at program steps 057-060 and 

126-129. 

The following two pages document the program. Table A.1 gives a test example. 

A.2 Stress-Strain Program 

The program starts from E =o = 0 and simulates loading at a constant strain rate E 

(specified by the nondimensional rate T i ) up to a specified maximum strain E * in a 

specified number of increments M. When the maximum strain has been reached, the 

program immediately simulates unloading at the constant strain rate -i from E * to 

zero strain. The time step size h = E */M -c c is in ternally computed. 

During execution, the program momentarily displays the step number H, the current 

strain q, and the current stress 0 H, where H is a specified multiple of h. The step 

number is incremented during loading and decremented during unloading. 

The program is supplied in a version which simulates softening behavior. To changl? 

to the stiffening model or back to the softening model, simply edit program steps 025 and 

054 in accordance with: 
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SOFTENING: jslGSBfle/ 

STIFFENING: lml 

Table A 2 gives a test example. The program listing appears on the two pages 

following Table A 2. 
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TABLE A-l. TESTEXAMPLE FORSTRESS-RELAXATIONPROGRAM 

USER STORES: 4. 8 ST01 B 

20 ST02 E, 

10 ST03 E 

1.8 ST04 n 

.l ST06 h 

10 ST07 H 

SOFTENING 

USER: .4A 

PROGRAM: 

0.0314 

10 0.3263 

20 0.2907 

30 0.2744 

40 0.2670 

48 0.2642 

0.0318 

STIFFENING 

USER: .02B 

PROGRAM: 

0.4042 

10 0.2739 

20 0.2285 

30 0.2127 

40 0.2072 

45 0.2059 

0.2042 

A-4 



TABLE A-2. TESTEXAMPLEFORSTRESS-STRAIN PROGRAM 

I USER STORES: m[m[B 

SOFTENING I STIFFENING I 

EDIT TO: [GSBfl] EDIT TO: [GSBfJ] 

PROGRAM: PROGRAM: 

10 0.1 0.9352 10 0.1 1.9958 
20 0.2 1.4437 20 0.2 3.9695 
30 0.3 1.8502 30 0.3 5.9237 
40 0.4 2.2031 40 0.4 7.8647 
50 0.5 2.5220 50 0.5 9.7993 
40 0.4 2.0890 40 0.4 7.7394 
30 0.3 1.6269 30 0.3 5.6988 
20 0.2 1.1056 20 0.2 3.6754 
10 0.1 0.4410 10 0.1 1.6778 

0 0.0 -0.5668 0 0.0 -0.2969 
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REGISTER USAGE: 

064 buI7 I I H 1092 1~~1 i I I 

099 + 

100 STD 0 re 

101 h pmq~ 

T-r 
073 JILL9 1 

1 

074 h P& 1102 IeLls 
I I I I 

075 RCL 0 03~RcL[3~ 1 
b I I 1 I 

076 h ,PALQS 1104(x] 1 1 

077 Id f I I I105 MA I I 
I I 1106 I+ 1 1 1 

325 Id+ I9 I I I I I 

382 ffl 0 110 f KiL 4 g; 
383 ~3 111 0 

384 + 112 SrD g 
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REGISTER USAGE: 

‘09 lmlsl I 

I 

0 

0 

0 

0 

0 

0 

0 

0 

(3 

a 

a 

C 

a 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

C 

( 

( 

( 

111 RCL 3 

I12 )( *ti 

113 

% 

4 

t14 0 

115 0 

)22 If I I I 

057 )( 

u\ 058 SD - lo86 PU E 
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113 SD + 0 41 169 197 

114 h ti 42 170 198 

115 9 % b ~~lcf 143 171 199 

116 WLD 144 172 200 

117 i 145 173 201 

118 - 146 174 202 

119 uu i 147 175 203 
, 
120 h x2 148 176 204 

USER ACTIONS: 
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